ПРИЛАДОБУДУВАННЯ
ТА ІНФОРМАЦІЙНО-ВИМІРЮВАЛЬНІ ТЕХНОЛОГІЇ

УДК 681.3
В. Туранчук, канд. техн. наук; В. Кочан, канд. техн. наук;
П. Биковий; А. Саченко, докт. техн. наук; В. Коваль, канд. техн. наук;
Дж. Марковський, докт. техн. наук
Тернопільська академія народного господарства

ПІДХІД ДО ОПТИМАІЗАЦІЇ ДИСТРИБУЮТЬНИХ
СЕНСОРНИХ СИСТЕМ БЕЗПЕКИ

В даній статті описано алгоритми визначення ключових функціональних показників компонентів дистрибуційного системи безпеки периметру території. На основі зазначеної структури формалізовані показники спроектовано структуру бази даних САПР. Запропоновано для оптимізації функціонально-вартісних показників спроектовано бази даних використання метод морфологічних матриць та відбір точок оптимізації сенсорних мереж, що забезпечують Парето-множини за кожним з ключових функціональних показників.

Вступ

Останнім часом розвиток систем безпеки придувається значна увага. Зокрема, тільки для дослідження за даними відділу державної безпеки США [1] на ці дослідження виділено 3 мільярди доларів в 2003 – 2007 роки. При цьому, крім росту кількості систем, ростуть їх функціональні можливості і складність системи в цілому [2]. Зокрема, сучасні системи характеризуються (i) комплексністю, яка полягає у захисті від усіх видів загроз та від усіх шляхів виникнення цих загроз, (ii) багаторівневим захистом, в якому функції рівні взаємо доповнюють одне одного, (iii) використанням методів штучного інтелекту для організації взаємодії рівнів захисту з метою класифікації вида загроз та її ступеню, (iii) захистом від незаконного доступу до самих систем безпеки та їх прихованої лінії. Очевидно, що це веде до росту цін на інформаційні системи безпеки. Тому актуальною задачею є оптимізація таких систем безпеки за функціонально-вартісними характеристиками. Складність задачі оптимізації полягає в тому, що багатофункціональні системи безпеки складаються з багатьох різnorівневих та різнопротипних компонентів, які повинні взаємодіяти в строго визначеному порядку [3]. Тому система оптимізації мусить оперувати з багатом параметрами багатьох компонентів, враховуючи не тільки параметри компонентів, спрямовані на виконання функції безпеки, а і на багато інших параметрів, які забезпечують функціонування системи.

Виходячи зі сказаного вище, першою підзадачею є створення бази даних компонентів, призначених для побудови різнопротипних систем безпеки. Через велику номенклатуру компонентів, які мають різні функції в системі, необхідно обґрунтувати вибір моделі та структури бази даних, які б забезпечили операційність управління даними, швидкість пошуку інформації та обробки захисту. Крім того, всі компоненти системи описуються великою множиною технічних і інтелектуальних характеристик, білясть з яких, з точки зору процесу оптимізації системи безпеки, є другорядними. Тому необхідне використання ключових функціональних показників та їх подальша уніфікація, які будуть брати участь в процесі оптимізації.

Другою задачею є визначення компонентів, що можуть звети замінити один одного, тобто з альтернативними варіантами при оптимізації. Третію підзадачею є визначення сумасть різних компонентів при їх взаємодії. При цьому слід
враховувати, що визначення такої взаємодії необхідне не тільки для суцільних компонентів з структурній схемі системи. Наприклад, сенсор системи безпеки безпосередньо взаємодіє з кабелем. Однак сутність для сенсора визначається як для кабелю, так і для вуліч розпізнавання небезпеки (Alarm Processor). Четвертою піддалась є висока оптимізація набору компонентів системи для отримання найкращого для даного використання співвідношення між функціональними характеристиками системи та її вартістю.

На етапі вибору такі та подібні системи оптимізація систем безпеки. Тому проектування таких систем вимагає вирішення переліченних вище задач, що і є предметом даної статті.

1. Створення бази даних компонентів

Першим кроком при створенні бази даних є попереднє підготовта параметрів компонентів. Для цього розроблена методика формування ключових функціональних показників якості з множини назв технічних характеристик, що описують даний компонент [4, 5]. Алгоритм обробки мінімізують назв технічних характеристик поданий на рис. 1.

На першому кроці алгоритму здійснюється формування початкової таблиці параметрів компонентів, яка включає максимальні технічні характеристики для різних реалізацій даного компоненту. В лінійках таблиці записуються технічні характеристики, а в стовпцях — типи конкретних реалізацій даного компоненту. На другому кроці алгоритму здійснюється усунення всіх ліній таблиці, інформація в яких співпадає (з допустимим відхиленням) для всіх типів компонентів або не відноситься до технічних характеристик. Наступні чотири кроки алгоритму здійснюють класифікацію показників компонентів за критеріями обмеження, якості, надійності та затрат на придбання і обслуговування компонента шляхом записи відповідної зміною у відповідну лінійку таблиці. Це дозволяє надати легко перенести таблицю в базу даних компонентів.

До показників обмеження відносяться ті ключові функціональні показники, які, безумовно, повинні виконуватися (наприклад, діапазон робочих температур, допустимий рівень створених вмішувань та інш.). До показників якості відносяться ті, які характеризують зміну дії, чувність, селективність, здатність до класифікації, тощо. До показників надійності відносяться не тільки час непрацездатності, а і захищеність із природних і інших причин (створення порушником) завад.

Рис. 1. Алгоритм обробки множини назв технічних характеристик

112
Приладобудування та інформаційно-вимірювальні системи

Якщо поточний показник не відносяться до одного з нерозрізнятих вище критеріїв, то ця лінійка усувається як дуже важливу по відношенню до основної функції даного компоненту. Після цього таблиця фіксується за кількістю відлітків, які названо ключовими функціональними показниками даного компоненту, і за кількістю стовпців, що висвітлюють кількість наведених (значеннях) реалізацій М даного компоненту.

Тепер починається обробка таблиці за стовпцями М. В зв'язку з великою різноманітністю показників якості та надійності для побудови системи оптимізації необхідно використовувати механізм порівняння показників між собою. Пропонується використовувати відносні обернені (квадратному значенню відповідає менше значення) значення ключових функціональних показників \(F_{i} \), які розраховуються за формулами:

\[
F_{i} = 150 \times \frac{F_{i}}{F_{\text{max}}},
\]

де \(F_{i} \) - показник \(i \)-того компоненту; \(F_{\text{max}} \) - максимальне значення показника для даної характеристики компонента.

В загальних обставинах і обставинах необхідно включити не тільки ціну компонента, а і затрати на його монтаж, відмовлення та обслуговування, а також визначати гарантійні строки служби. Відносні затрати на придбання и обслуговування було оновлено, виходячи з ціни сенсорів і терміну гарантії відповідно до наступної формулі:

\[
C_{i} = P + \frac{W_{i}}{W_{\text{max}}} \times P,
\]

де \(P \) - ціна компонента; \(W_{i} \) - максимальний, гарантійний термін серед всіх компонентів; \(W_{\text{max}} \) - гарантійний термін \(i \)-того компонента.

На рис. 2 подана реалізація таблиці параметрів пасивних інфракрасових сенсорів, створена за запропонованим алгоритмом рис. 1 на базі відповідної таблиці даного виду [6]. В цій таблиці лінійки 4, 11, 12 відносяться до ключових функціональних показників обмеження, лінійки 3, 5 - до показників якості, а лінійки 6 і 7 - до показників надійності. Лінійка 17 відображає відносні затрати на придбання і обслуговування компоненти.

Рис. 2. Результати таблиці ключових функціональних показників пасивних інфракрасових сенсорів

Наступним кроком є тільки створена таблиця, що визначає взаємозв'язок компонентів для того, щоб визначити можливість їх використання як альтернативних варіантів при оптимізації. Основним критерієм для визначення взаємозв'язку компонентів є відсутність яких-небудь відмінностей у їх ключових функціональних показниках та параметрах відносного. Наприклад, сенсори, що відрізняються тільки
радіусом дії, є взаємозв'язок, тому для їх захисту однакового периметру потрібна різна кількість цих сенсорів. Сенсори, які мають різний вихідний сигнал, не є взаємозв'язківими. Доцільно є автоматизоване перевірка компонентів системи безпеки на взаємозв'язність. Однак в зв'язку з тим, що задача визначення взаємозв'язності слабко підходиться формалізації, доцільно ввести відповідний режим візуальної перевірки і редагування людиною. Наступним показником, який може підходити для формалізації, є показник суперечності. Він може бути визначений програмою шляхом аналізу характеристик вхідних і вихідних сигналів компонентів системи. Однак в зв'язку з можливим незначним впливом вхідних і вихідних параметрів різних компонентів, також доцільно передбачити можливість візуальної перевірки та редагування цих показників людиною. Проведена за допомогою методикою поліпорядок обробка параметрів компонентів системи безпеки дозволяє створити базу даних для оптимізації таких систем.

Для створення бази даних компонентів системи безпеки доцільно вибрати релейну модель бази даних, що підтримується практично усіма сучасними системами управління базами даних. Оптимізація системи безпеки буде позначитись в послідовному переборі матриці компонентів системи, що легко забезпечується використанням релейної моделі бази даних. Пропозиція розробленої релейної бази даних системи безпеки наведено на рис. 3.

Рис. 3. Структура бази даних системи безпеки периметра території

Файл „Довідник компонентів” містить ключовий атрибут „ID компоненти”, за яким визначається клас, принцип дії, модель та опис компонентів, що буде використовуватись в системі. Файл „Довідник одиниць виміру” містить інформацію про назву та одиницю вимірювання параметрів компонентів системи. Інформація про створені системи безпеки, що складаються з різних класів компонентів, міститься у файлі „Довідник системи”. Файл „Довідник параметрів” містить параметри компонентів системи. Критерії, до яких належать ключові функціональні показники компонентів системи, містяться у файлі „Довідник критеріїв”. Файл „Параметри компонентів” містить складений клас „ID компоненти” та „ID параметра”, за яким визначається значення, нормалізована відстань, приймах нормалізації та одиниці

114
Перед виконанням процедур оптимізації необхідно звести дані про загальні вимоги до системи безпеки периметру території – розміри охоронної зони периметру, основні впливаючі фактори, (діапазон робочих температур і вологості для зон розміщення окремих компонентів, параметри замал, які можуть виникати при експлуатації системи та інші обставини), а також: головний для кожного компоненту показник якості, що буде використовувати при обчисленні сумарного показника якості системи.

Продукт оптимізації є багаторівневим. Під час кожного процесу з кожного рядка морфологічної матриці попередньо вибирається лише один з інших, таким чином, кожен процес формує один альтернативний варіант побудови системи безпеки.

Потім альтернативні варіанти оцінюють за ключовими функціональними показниками системи в цілому. Кожен крок кожного процесу починається з виборі з бази даних ключових функціональних показників компонента. На цьому виконуються наступні операції:

1. Перевірка ключових функціональних показників обмеження. Якщо ці показники для компонента не відповідають обмеженням для системи в цілому, то поточний варіант виключається. Однак необхідно враховувати конкретні умови експлуатації даного компонента в зоні його розміщення;
2. Перевірка сумісності компонентів у поточному варіанти системи. Компонент, який вибирається з бази даних першим при формуванні нового варіанту системи (у нашому випадку сенсор), видається наперед сумісним. Надалі наступні компоненти перевіряються на сумісність з номенклатурою вибраними компонентами.
Однак, хоча структура системи безпеки (рис. 4) є лінійною (вхід наступного компонента підключається тільки до виходу попереднього), в процедурі оптимізації необхідно передбачити глибшу - перевірку на сумісність. Зокрема, необхідна перевірка на сумісність не тільки із вибраною компонентами сенсор - кабель, а і сенсор - охоронна панель. Якщо компоненти поточного варіанту системи є несумісними, то варіант відкидається. Однак, для контрольу правильності залишку показників сумісності в базі даних компонентів несуцільно пари компонентів записуються в окремий файл, який перевіряється користувачем системи оптимізації.

3. Визначення кількості компонентів системи безпеки, які забезпечують захист заможного периметру території. Наприклад, для сенсезорів підраховується кількість потребних сенсозорів, виходячи з їх радіусу дії і довжини охоронної зони (з врахуванням визначеного коefіцієнта перекриття); для кабелів визначається сумарна довжина (з врахуванням можливості підключення декількох сенсорів до одного багатожильного кабелю); для охоронної панелі визначається необхідна кількість входів, яка, в свою чергу, визначається кількістю сензорів.
Дана при виконанні кожного кроку проводиться обчислення: ключових функціональних показників k-го альтернативного варіанту проектованої системи. При цьому показники еквалентних затрат k-го альтернативного варіанту системи C_k^n знаходяться шляхом сумування відповідних показників кожного компонента

\[C_k^n = \sum_{i=1}^{m} C_{Ei} \]

де \(C_{Ei} \) - відносні затрати на вибрану компонент системи безпеки; i - номер стовпца вибраного компонента в рядку; i = 1, n, j - номер рядка в морфологічній матриці; j = 1, m.

Показник надійності k-го альтернативного варіанту системи \(P_k^n \) знаходиться за формуллю

\[P_k^n = \prod_{i=1}^{m} (P_i + A) / 100 \]

де \(P_i \) - ключовий функціональний показник надійності i-го компонента, A - константа, яка дозволяє приймати участь в оптимізації компонентам з нульовим ключовим функціональним показником надійності. Ця константа повинна бути підібрана експериментально таким чином, щоб обчислення значень надійності найкращих систем додавало приблизно значенням дієвої надійності такої систем.

Показник якості k-го альтернативного варіанту системи \(Q_k^n \) знаходиться за формуллю

\[Q_k^n = \sum_{i=1}^{m} Q_{gi} \]

де \(Q_{gi} = w_i \times F_{gi} \) - зазначений показник якості вибраного компонента системи безпеки; \(F_{gi} \) - ключовий функціональний показник якості, обчислений за формуллю (1) i вибраний користувачем як головний при вводі даних про загальні вимоги до системи безпеки.
Всі названі вище показники в результаті кожного проходу записуються в окремий запис бази даних, яку названо база даних варіантів проектованої системи.
Наступною процедурою є власне оптимізація проектованої системи безпеки.
Висновки
Запропонований в даній статті алгоритм визначення ключових функціональних показників компонентів дистрибутивних систем безпеки периметра територій дозволяє автоматизувати процедуру підготовки даних для САПР, призначеної для аналізу і оптимізації функціонально-вартісних характеристик системи безпеки. Заставання даного алгоритму дозволило створити базу даних компонентів - систем безпеки периметру територій, показники якої є уніфіковані і пристійні для створення САПР оптимізації таких систем безпеки. На основі аналізу показників уніфікованих показників спроектована структура бази даних САПР. Запропоноване для оптимізації функціонально-вартісних показників спроектованої бази даних використано метод морфологічних матриць та відбір тих варіантів дістрибутивних системних мереж, що запобігають Паратовій множинні з кожного з ключових функціональних показників.

Подяки
Автори дякують за підтримку цієї роботи Фонду південних досліджень та розвитку США, грант CRDF FSTM UM2-5012-TE-03 "Design of Distributed Sensor Network for Ayers Island Security Using Value Analysis Technology".

The algorithms to define key-functional parameters of distributed sensor systems of perimeter security is presented in this study. The database structure of computer aided design system is designed based on analysis of a set of formalized data. A morphological matrix method of Pareto related to each key-functional parameter is used for optimization of cost functional parameters of the components of perimeter security systems.

Література
8. Опрок В.М. Морфологические методы решения проблемных задач как раздела научно-технического творчества. - Постановка вопроса // УСам, 199 - № 4/5 - С. 48-54.

Однахідно 22.03.2005 р.